

ESP-12K SPECIFICATION Version V1.0 Copyright ©2019

Copyright © 2019 Shenzhen Ai-Thinker Technology Co., Ltd All Rights Reserved

Disclaimer and copyright notice

The information in this article, including the URL for reference, is subject to change without notice.

The document is provided "as is" without any guarantee responsibility, including any guarantee of marketability, suitability for a specific purpose or non-infringement, and any guarantee mentioned elsewhere in any proposal, specification or sample. This document assumes no responsibility, including any liability for infringement of any patent rights arising from the use of the information in this document. This document does not grant any license to use intellectual property rights, whether express or implied, by estoppel or other means.

The test data obtained in this article are all obtained by Enxin Lab's laboratory tests, and the actual results may be slightly different.

The Wi-Fi Alliance member logo is owned by the Wi-Fi Alliance.

All trademark names, trademarks and registered trademarks mentioned in this article are the property of their respective owners and are hereby declared.

The final interpretation right belongs to Shenzhen Anxinke Technology Co., Ltd.

Notice

The contents of this manual may change due to product version upgrade or other reasons. Shenzhen Anxinke Technology Co., Ltd. reserves the right to modify the contents of this manual without any notice or prompt. This manual is only used as a guide. Shenzhen Anxinke Technology Co., Ltd. makes every effort to provide accurate information in this manual, but Shenzhen Anxinke Technology Co., Ltd. does not guarantee that the contents of the manual are completely error-free. And the suggestion does not constitute any express or implied guarantee.

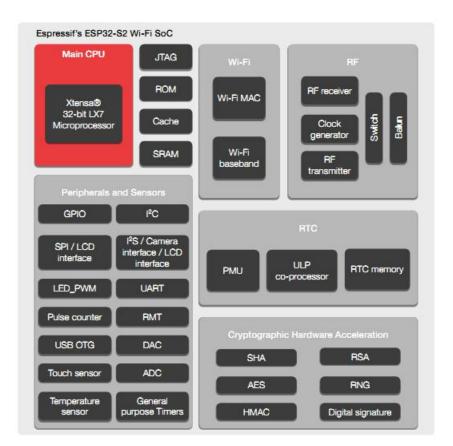
Version	Date	Formulation / Revision	Make	Verify
V1.0	2020.04.10	First formulated	Yiji Xie	

Formulation / Revision / Abolition of CV

CONTENT

1.PRODUCT DESCRIPTION	V
2.ELECTRICAL PARAMETER	IX
3.DIMENSION	XI
4.PIN DEFINITION	XIII
5.SCHEMATIC DIAGRAM	XVI
6.DESIGN GUIDE	XVII
7.RRFLOW SOLDERING CURER	
8.PACKAGING	XXI
9.CONTACT US	XXI

1.PRODUCT DESCRIPTION


ESP-12K is a Wi-Fi module developed by Ensink Technology. The core processor ESP32-S2 of this module is a highly integrated low-power Wi-Fi system-on-chip (SoC) designed for the Internet of Things (IoT), Mobile devices, wearable electronic devices, smart home and other applications. ESP32-S2 has industry-leading low-power performance and RF performance, supports IEEE802.11b / g / n protocol, integrates Wi-Fi MAC, Wi-Fi RF and baseband, RF switch, RF Balun, power amplifier, low noise Amplifier, etc.

The ESP32-S2 chip is equipped with Xtensa® 32-bit LX7 single-core processor, and its operating frequency is up to 240 MHz. The chip supports secondary development without the use of other microcontrollers or processors. The chip has 320 KB SRAM and 128 KB ROM, and can be connected to flash and RAM through SPI / QSPI / OSPI and other interfaces. ESP32-S2 supports a variety of low-power operating states to meet the power consumption requirements of various application scenarios. The unique fine clock gating function, dynamic voltage clock frequency adjustment function, and RF output power adjustable function of the chip can achieve the best balance between communication distance, communication rate and power consumption.

ESP32-S2 provides a wealth of peripheral interfaces, including SPI, I2S, UART, I2C, LED PWM, LCD interface, Camera interface, ADC, DAC, touch sensor, temperature sensor and up to 43 GPIO.It supports the expansion of PSRAM on the periphery of the chip, and the ESP-12K module can be equipped with PSRAM. In addition, it includes a full-speed USB On-The-Go (OTG) interface that can support the use of USB communication.

ESP32-S2 has a variety of unique hardware security mechanisms. The hardware encryption accelerator supports AES, SHA, and RSA algorithms. The RNG, HMAC and Digital Signature (Digital Signature) modules provide more security features. Other security features include flash encryption and secure boot (se-cure boot) signature verification. The perfect security mechanism enables the chip to be perfectly applied to various encryption products.

Features

- Complete 802.11b / g / n Wi-Fi SoC module, data rate up to 150Mbps
- Built-in ESP32-S2 chip, Xtensa® single-core 32-bit LX7 microprocessor, support up to 240 MHz clock frequency, with 128KB ROM, 320KB SRAM, 16KB RTC SRAM
- Support UART / GPIO / ADC / PWM / SPI / I2C / LCD / I2S / Camera / IR / USB / DAC interface, support touch sensor, temperature sensor, pulse counter
- SMD-42 packaging
- Integrate Wi-Fi MAC/ BB/RF/PA/LNA
- Support multiple sleep modes, deep sleep current is less than10uA
- Serial port speed up to4Mbps

- Built-in Lwip protocol stack
- Support STA/AP/STA+AP work mode
- Smart Config (APP) / AirKiss (WeChat) one-click distribution network supporting Android and IOS
- Support serial local upgrade and remote firmware upgrade (FOTA)
- General AT command can be used quickly
- Support secondary development, integrated Windows, Linux development environment
- About PSRAM:

ESP-12K supports optional PSRAM, the default 2 kinds of PSRAM configuration, the shield can be distinguished on the silk screen. For details, please refer to the product appearance drawing.

ESP-12K(00) without PSRAM

ESP-12K(08) configuration 8MByte PSRAM

Main parameter

List 1 Main parameter			
Model Name	ESP-12K		
Packaging	SMD-42		
Size	31.0*18.0*3.0(±0.2)MM		
Antenna	PCB antenna/IPEX connector		
Spectrum range	2400 ~ 2483.5MHz		
Work Temperature	-40 ℃ ~ 85 ℃		
Storage environment	-40 ℃ ~ 125 ℃ , < 90%RH		
Power Supply Range	Voltage 3.0V ~ 3.6V, Current >500mA		

Interface	UART/GPIO/ADC/PWM/SPI/I2C/LCD/I2S/Camera/IR/USB/DA C
IO port qty	37
Serial rate	Support 110 ~ 4608000 bps , default 115200 bps
Safety	WEP/WPA-PSK/WPA2-PSK
SPI Flash	Default 32Mbit
PSRAM	Optional without PSRAM or 8MByte PSRAM

2.ELECTRICAL PARAMETER

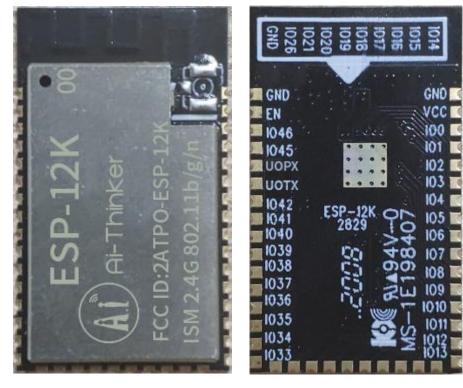
Parameter		Condition	Min	Typical	Мах	Unit
Voltage		VDD	3.0	3.3	3.6	V
	VIL/VIH	-	-0.3/0.75VIO	-	0.25VIO/3.6	V
I/O	Vol/Voh	-	N/0.8VIO	-	0.1VIO/N	V
	I _{MAX}	-	-	-	12	mA

RF performance

Description	Typical	Unit
Work frequency	2400 - 2483.5	MHz
(Dutput power	
In 11n mode HT40,PA output power is	12±2	dBm
In 11n mode HT20,PA output power is	13±2	dBm
In 11g mode, PA output power is	14±2	dBm
In 11b mode, PA output power is	16±2	dBm
Re	ceive sensitivity	
CCK, 1 Mbps	<=-96	dBm
CCK, 11 Mbps	<=-88	dBm
6 Mbps (1/2 BPSK)	<=-91	dBm
54 Mbps (3/4 64-QAM)	<=-74	dBm
HT20 (MCS7)	<=-71	dBm
HT40 (MCS7)	<=-68	dBm

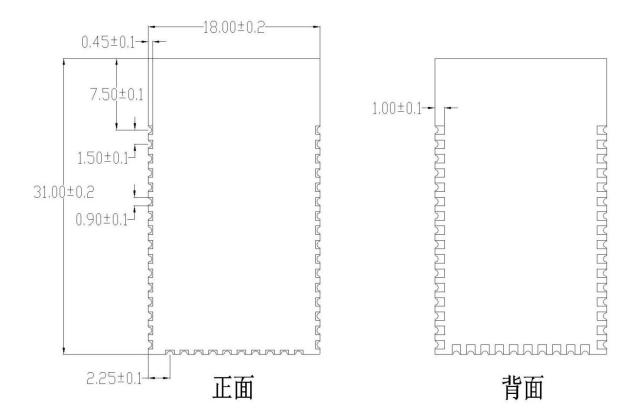
Power consumption

The following power consumption data is based on a 3.3V power supply, an ambient temperature of 25 ° C, and is measured using an internal voltage regulator.


- All measurements are done at the antenna interface without SAW filters.
- All transmission data is based on a 90% duty cycle, measured in continuous transmission mode.

Mode	Mix	Typical	Мах	Unit
Send 802.11b, CCK 11Mbps, POUT=+17dBm	-	190	-	mA
Send 802.11g, OFDM 54Mbps, POUT =+15dBm	-	145	-	mA
Send 802.11n, MCS7, POUT =+13dBm	-	120	-	mA
Receive 802.11b,package length 1024bit, -80dBm	-	63	-	mA
Receive 802.11g, package length 1024, -70dBm	-	63	-	mA
Receive 802.11n,package length 1024bit, -65dBm	-	68	-	mA
Modem-Sleep①	-	20	-	mA
Light-Sleep2	-	1.4	-	mA
Deep-Sleep3	-	20	-	μA
Power Off	-	0.5	-	μA

3.DIMENSION


ESP-12K (00)

ESP-12K (08)

4.PIN DEFINITION

The ESP-12K module has a total of 42 interfaces, such as the pin diagram, the pin function definition table is the interface definition

IO26 GND	1017 1018 1018 1020	1014 1015
GND EN IO46 IO45 UORX UOTX IO42 IO41 IO40 IO39 IO38 IO37 IO36 IO35 IO34 IO33	ESP-12K 2906	GND VCC 100 101 102 103 104 105 106 107 108 109 1010 1011 1012 1013

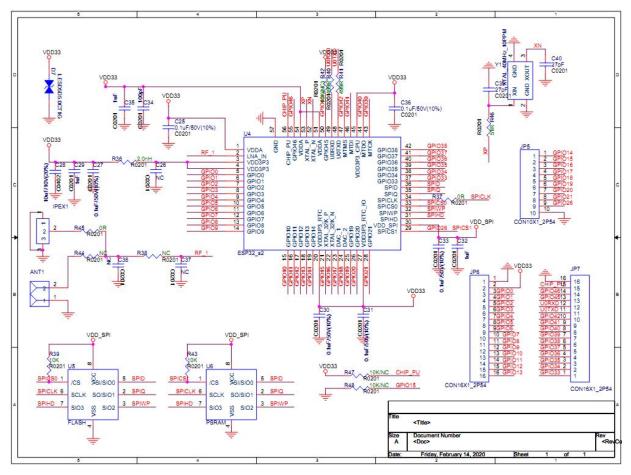
ESP-12K PIN definition diagram

List PIN	function	definition
	ranouon	aominaon

No.	item	Function Description
1	GND	ground
2	VCC	Power supply
3	100	RTC_GPIO0, GPIO0
4	IO1	RTC_GPIO1, GPIO1, TOUCH1, ADC1_CH0
5	102	RTC_GPIO2, GPIO2, TOUCH2, ADC1_CH1
6	IO3	RTC_GPIO3, GPIO3, TOUCH3, ADC1_CH2
7	104	RTC_GPIO4, GPIO4, TOUCH4, ADC1_CH3
8	105	RTC_GPIO5, GPIO5, TOUCH5, ADC1_CH4
9	IO6	RTC_GPIO6, GPIO6, TOUCH6, ADC1_CH5

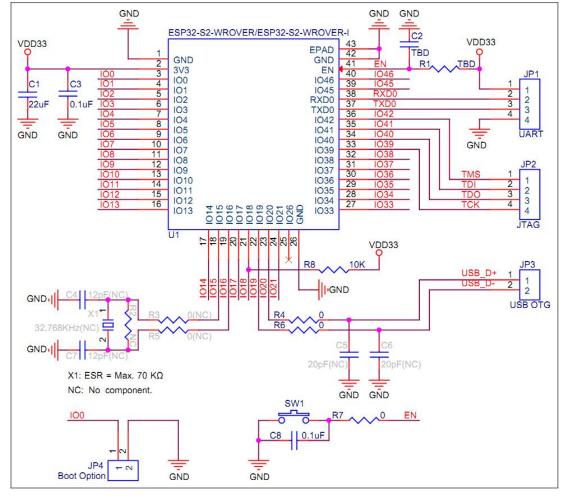
10	107	RTC_GPIO7, GPIO7, TOUCH7, ADC1_CH6
11	IO8	RTC_GPIO8, GPIO8, TOUCH8, ADC1_CH7
12	IO9	RTC_GPIO9, GPIO9, TOUCH9, ADC1_CH8, FSPIHD
13	IO10	RTC_GPIO10, GPIO10, TOUCH10, ADC1_CH9, FSPICS0, FSPIIO4
14	IO11	RTC_GPIO11, GPIO11, TOUCH11, ADC2_CH0, FSPID, FSPIIO5
15	IO12	RTC_GPIO12, GPIO12, TOUCH12, ADC2_CH1, FSPICLK, FSPIIO6
16	IO13	RTC_GPIO13, GPIO13, TOUCH13, ADC2_CH2, FSPIQ, FSPII07
17	IO14	RTC_GPIO14, GPIO14, TOUCH14, ADC2_CH3, FSPIWP, FSPIDQS
18	IO15	RTC_GPIO15, GPIO15, U0RTS, ADC2_CH4, XTAL_32K_P
19	IO16	RTC_GPIO16, GPIO16, U0CTS, ADC2_CH5, XTAL_32K_N
20	IO17	RTC_GPIO17, GPIO17, U1TXD, ADC2_CH6, DAC_1
21	IO18	RTC_GPIO18, GPIO18, U1RXD, ADC2_CH7, DAC_2, CLK_OUT3
22	IO19	RTC_GPIO19, GPIO19, U1RTS, ADC2_CH8, CLK_OUT2, USB_D-
23	IO20	RTC_GPIO20, GPIO20, U1CTS, ADC2_CH9, CLK_OUT1, USB_D+
24	IO21	RTC_GPIO21, GPIO21
25	IO26	SPICS1, GPIO26
26	GND	接地
27	IO33	SPIIO4, GPIO33, FSPIHD
28	IO34	SPIIO5, GPIO34, FSPICS0
29	IO35	SPIIO6, GPIO35, FSPID
30	IO36	SPIIO7, GPIO36, FSPICLK
31	1037	SPIDQS, GPIO37, FSPIQ
32	IO38	GPIO38, FSPIWP

33	IO39	MTCK, GPIO39, CLK_OUT3
34	IO40	MTDO, GPIO40, CLK_OUT2
35	IO41	MTDI, GPIO41, CLK_OUT1
36	IO42	MTMS, GPIO42
37	U0TX	U0TXD, GPIO43, CLK_OUT1
38	U0RX	U0RXD, GPIO44, CLK_OUT2
39	IO45	GPIO45
40	IO46	GPIO46
41	EN	High level: chip enable; Low level: the chip is off; Has been raised by default.
42	GND	Ground


List Module startup mode description

System startup mode			
Pin	Default	SPI startup mode	Download startup mode
IO0	Pull up	1	0
IO46	Pull down	Irrelevant	0

Note: Some pins have been pulled up internally, please refer to the schematic


5.SCHEMATIC DIAGRAM

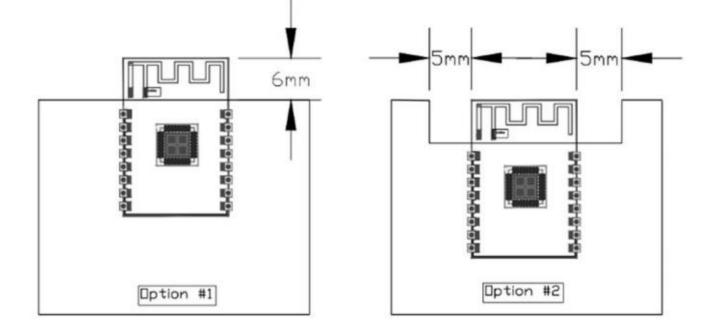
6.DESIGN GUIDE

1. Application circuit

note:

(1) The RC delay circuit needs to be added to the EN pin. It is recommended that $R = 10k\Omega$ and $C = 0.1\mu$ F;

(2) GPIO18 as U1RXD needs to add a pull-up resistor externally.

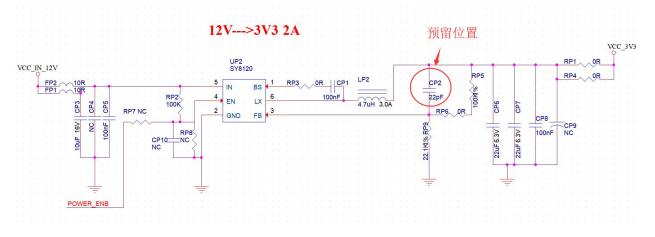

2、Antenna layout requirements

(1) The following two methods are recommended for the installation location on the motherboard:

Option 1: Place the module on the edge of the main board, and the antenna area protrudes from the edge of the main board.

Option 2: Place the module on the edge of the motherboard, and the edge of the motherboard digs out an area at the position of the antenna.

(2) In order to meet the performance of the onboard antenna, it is forbidden to place metal parts around the antenna, away from high-frequency devices.


3、Power supply

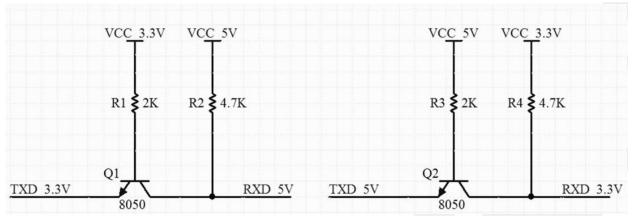
(1) 3.3V voltage is recommended, the peak current is more than 500mA

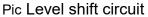
(2) It is recommended to use LDO for power supply; if using DC-DC, it is recommended to control the ripple within 30mV.

(3) It is recommended to reserve the position of the dynamic response capacitor in the DC-DC power supply circuit, which can optimize the output ripple when the load changes greatly.

(4), 3.3V power interface is recommended to add ESD devices.

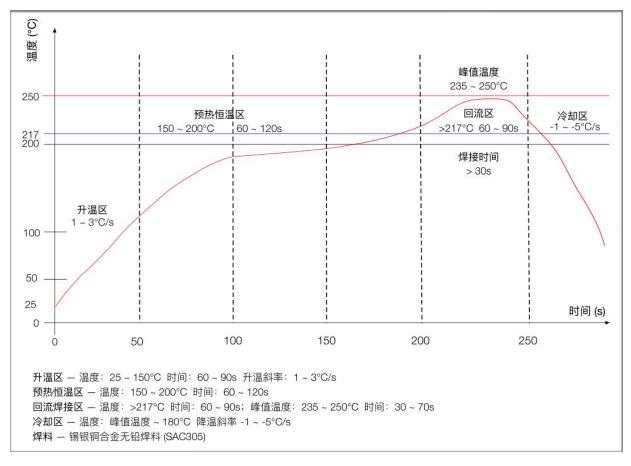
4、Use of GPIO port


(1) Some GPIO ports are led out of the periphery of the module. If you need to use a 10-100 ohm resistor in series with the IO port. This can suppress overshoot, and the level on both sides is more stable. Helps both EMI and ESD.


(2) For the up and down of the special IO port, please refer to the instruction manual of the specification, which will affect the startup configuration of the module.

(3) The IO port of the module is 3.3V. If the IO level of the main control and the module does not match, a level conversion circuit needs to be added.

(4) If the IO port is directly connected to the peripheral interface, or the pin header and other terminals, it is recommended to reserve ESD devices near the terminal of the IO trace.



7.RRFLOW SOLDERING CURER

8.PACKAGING

As shown below, the packaging of ESP-12K is taping.

9.CONTACT US

Website: https://www.ai-thinker.com Development DOCS: https://docs.ai-thinker.com Official forum: http://bbs.ai-thinker.com Sample purchase: https://aithinker.onesite.alibaba.com/ Business: sales@aithinker.com Technical support: support@aithinker.com Add: 408-410, Block C, Huafeng Smart Innovation Port, Gushu 2nd Road, Xixiang, Baoan District, Shenzhen

Tel: 0755-29162996

